Polymerization of fibrin: Direct observation and quantification of individual B:b knob-hole interactions.

نویسندگان

  • Rustem I Litvinov
  • Oleg V Gorkun
  • Dennis K Galanakis
  • Sergiy Yakovlev
  • Leonid Medved
  • Henry Shuman
  • John W Weisel
چکیده

The polymerization of fibrin occurs primarily through interactions between N-terminal A- and B-knobs, which are exposed by the cleavage of fibrinopeptides A and B, respectively, and between corresponding a- and b-holes in the gamma- and beta-modules. Of the potential knob-hole interactions--A:a, B:b, A:b, and B:a--the first has been shown to be critical for fibrin formation, but the roles of the others have remained elusive. Using laser tweezers-based force spectroscopy, we observed and quantified individual B:b and A:b interactions. Both desA-fibrin with exposed A-knobs and desB-fibrin bearing B-knobs interacted with fragment D from the gammaD364H fibrinogen containing b-holes but no functional a-holes. The strength of single B:b interactions was found to be 15 to 20 pN, approximately 6-fold weaker than A:a interactions. B:b binding was abrogated by B-knob mimetic peptide, the (beta15-66)2 fragment containing 2 B-knobs, and a monoclonal antibody against the beta15-21 sequence. The interaction of desB-fibrin with fragment D containing a- and b-holes produced the same forces that were insensitive to A-knob mimetic peptide, suggesting that B:a interactions were absent. These results directly demonstrate for the first time B:b binding mediated by natural B-knobs exposed in a fibrin monomer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level.

Using laser tweezers, we measured for the first time the forces of individual knob-into-hole interactions underlying fibrin polymerization. Exposure of A-knobs in desA-fibrin or its fragment from the central part of the molecule (N-terminal disulphide knot, NDSK) resulted in strong interactions with fibrinogen or fragment D (containing only a- and b-holes), producing a binding strength of appro...

متن کامل

Molecular mechanisms, thermodynamics, and dissociation kinetics of knob-hole interactions in fibrin.

Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs 'A' and 'B' in the central nodule of fibrin monomer to complementary holes 'a' and 'b' in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the ...

متن کامل

Mechanisms of fibrin polymerization and clinical implications.

Research on all stages of fibrin polymerization, using a variety of approaches including naturally occurring and recombinant variants of fibrinogen, x-ray crystallography, electron and light microscopy, and other biophysical approaches, has revealed aspects of the molecular mechanisms involved. The ordered sequence of fibrinopeptide release is essential for the knob-hole interactions that initi...

متن کامل

Molecular interference of fibrin's divalent polymerization mechanism enables modulation of multiscale material properties.

Protein based polymers provide an exciting and complex landscape for tunable natural biomaterials through modulation of molecular level interactions. Here we demonstrate the ability to modify protein polymer structural and mechanical properties at multiple length scales by molecular 'interference' of fibrin's native polymerization mechanism. We have previously reported that engagement of fibrin...

متن کامل

Building better fibrin knob mimics: an investigation of synthetic fibrin knob peptide structures in solution and their dynamic binding with fibrinogen/fibrin holes.

Fibrin polymerizes via noncovalent and dynamic association of thrombin-exposed "knobs" with complementary "holes." Synthetic knob peptides have received significant interest as a means for understanding fibrin assembly mechanisms and inhibiting fibrin polymerization. Nevertheless, the inability to crystallize short peptides significantly limits our understanding of knob peptide structural featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 109 1  شماره 

صفحات  -

تاریخ انتشار 2007